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Steady laminar forced convection of non-Newtonian fluids past rotating spheres with 
permeable walls has been analyzed. New coordinate transformations are used to reduce 
the streamwise dependence of the coupled nonlinear boundary layer equations, simplifying 
the numerical solution procedure. The effects of the type of power-law fluid on the local 
skin friction coefficient and heat transfer coefficient are determined. As expected, both 
increase with increasing body rotation, while fluid injection decreases them and fluid 
withdrawal increases them. The effect of the mass transfer parameter on the local heat 
transfer group is significant for power-law fluids with large Prandtl numbers. The angle 
of boundary layer separation decreases with increasing index number of the power-law 
viscosity model. 

Keywords: forced convection heat/mass transfer; Dower-law fluids; rotating, porous 
sphere; non-Newtonian fluid 

Introduction 

The analysis of a spinning axisymmetric body in a non- 
isothermal flow field is of interest in rotary machine design, 
including transpiration cooling, moving or reentering projectile 
behavior, wire or fiber coating, and foodstuff processing. Some 
of these applications involve non-Newtonian fluids which can 
be approximated with the power-law viscosity model. The 
introduction of the additional nonlinearity into the momentum 
equation excludes the Mangler transformation, typically used 
in the solution procedure for axisymmetric boundary layer flow 
problems. Body rotation may enhance convection heat transfer 
because centrifugal forces push the fluid near the surface 
outward, which is then replaced by fluid of a different tempera- 
ture. If the wall of the submerged body is porous or perforated, 
fluid at a prescribed temperature can be injected into the 
boundary layer (blowing) or fluid at the wall surface can be 
withdrawn (suction). These additional mass transfer processes 
may measurably alter the local skin friction and heat transfer 
coefficients. 

Simplified forms of the present system have been extensively 
analyzed in the past. For example, Hoskin’ calculated the 
boundary layer parameters for flow past a rotating sphere using 
the Blasius-series technique. Koh and Price’ considered forced 
nonisothermal flow past a rotating cone, and Chao and Greif3 
assumed a quadratic velocity profile to study forced convection 
heat transfer over rotating bodies with arbitrary surface tem- 
perature. Lee et aL4 used a Merk series expansion to solve the 
same problem3 for a wider range of Prandtl numbers and body 
speeds. Lien et aL5 extended the previous paper4 to analyze 
the effect of injection and suction of fluid at the body surface. 
Tsay and Chou6 studied forced convection heat transfer between 
a rotating disk and a power-law fluid. Considering a step change 
in temperature, the instant-local similarity method was used to 
solve the problem. With the exception of their work,6 in all 
previous investigations the fluid was Newtonian and somewhat 

restrictive series expansions were employed to solve particular 
boundary layer equations. 

The present analysis concentrates on steady laminar forced 
convection of a power-law fluid past a permeable, rotating 
axisymmetric body. The four describing partial differential 
equations are transformed to three coupled nonlinear differential 
equations which contain partial derivatives in the streamwise 
direction only. An implicit finite difference scheme is used to 
solve the reduced system of equations. The example of a rotating 
permeable sphere is given to illustrate the effects of the power- 
law viscosity index and the generalized non-Newtonian Prandtl 
number on the local skin friction coefficient and Nusselt 
number. 

Analysis 

Modeling equations for an axisymmetric body 

Consider steady laminar axisymmetric boundary layer flow of 
a power-law fluid past a spinning, permeable body at constant 
wall temperature. The axis of rotation is parallel to the free- 
stream velocity (Figure 1). The nonrotating orthogonal co- 
ordinates x and y are measured from the forward stagnation 
point along the body surface and outward normal to the wall, 
respectively. The velocity component u is in the x direction, u is 
in the y direction, and w is the transverse velocity due to the 
body spin. Neglecting wake effects and assuming constant 
properties, the describing equations are4.’ 

; (r.)+i (ru)=O (1) 

au au w'dr du K a aun-lau ~_+~_-__-_~u,2+__ - - 
ax ay r dx [II 1 dx P ay ay ay 

(2) 
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Ox dy Oy 2 

subject to the boundary conditions 

a t y = 0 :  u=0 ,  v= +_v., w=rQ, and T= Tw 
(5) 

at y ~ o o :  u=uc(x), w=0,  and T=T~ 

where Vw is the wall velocity due to blowing or suction. 
The system of equations can be reduced using the stream 

function approach 

1 ~ 1 ~ 
u = -  - -  and v = - - -  (6a, b) 

r ~y r Ox 

and the transformations 

q = e Y (7a, b) 

( ~ ~l/'n + 1'fUoo~(1 - 2n'/(n+ 1' f O :  
~k=rLU~\Re j [ ~ )  F(¢,q)-- rvwdx (7c) 

T -  Too w 
0(~, q) and g(~, r / ) = - -  (7d, e) 

T w - Too rf~ 
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where 

u 2 - .L. 
Re=P 

K 

is the generalized Reynolds number, with L being a characteristic 
length of the body. 

As a result, the continuity equation is automatically satisfied, 
and the momentum equations and the energy equation are 
transformed to 

(If"l"- 'F") '  + 7(¢)FF" + A(~)(1 - F '2) 

+ C(~)O 2 -- MPD(~)F" = ~ [F '  OF'_ F" OF] 
a¢ aid (8) 

=~[F , ~O , 

and 

[- ,00 ,~?F-I 
V ,,o, 

where 

due 
A ( ~ ) = - - - -  ( l l a )  

u e d~ 

1 2 n -  1 ~ dr 
7(~)= + A-+---- (llb) 

n + l  n + l  r d ~  

\ u d u ~ /  
[11 "~(1- 2n)/(n+ l) 

0(¢)=¢"""+"~ -° )  (lld) 
xUoo/ 

I/U \3(1-n)/(n+ l) 
E(~) = t ~ _ )  ~(n- l)/(n + 1) ( , l e )  

uJu~ /  

Notat ion  

BP 
BP* 
BP** 
Cf 
F 
g 
h 
K 
k 
L 
MP 
Nu 
n 
Pr 
Re 
R 
r 

T 

Rotation parameter, BP = (Lf~/uoo) 2 
Rotation parameter, BP*= BP/2.25 
Rotation parameter, BP**= (Rf~/ue) 2 
Local skin friction coefficient 
Dimensionless stream function 
Dimensionless velocity 
Local heat transfer coefficient 
Fluid consistency index for power-law fluid 
Thermal conductivity 
Characteristic length of rotating body 
Mass transfer parameter 
Local Nusselt number 
Index of power-law viscosity model 
Generalized Prandtl number 
Generalized Reynolds number 
Radius of sphere 
Distance from a point on the surface to the axis of 
symmetry 
Temperature 

U 

V 

W 

X 

Velocity component in x direction 
Velocity component in y direction 
Transverse velocity component 
Streamwise coordinate along the body surface 
measured from the forward stagnation point 
Coordinate normal to the surface 

Greek Symbols 
ct Thermal diffusivity 
t/ Dimensionless coordinate 
0 Dimensionless temperature 
p Density of fluid 
z Shear stress 

Dimensionless coordinate 
~, Stream function 

Angular velocity 
q~ Angle of sphere 

Subscripts 
e Boundary layer edge condition 
oo Ambient condition 
w Wall condition 
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dr 
H(~)=2 - - -  ( l lg)  

rd~  

The rotation parameter BP is defined as 

BP = ( L f ~  2 (12a) 
\ u ~ /  

and the mass transfer or blowing/suction parameter MP is 
defined as 

M P =  +_v. Rel/~. + 1) (12b) 
Uoo 

The generalized Prandtl number is 

p r=U~ L Re- 2/(. + t) (12c) 
~t 

The corresponding boundary conditions are 

a t q = 0 :  F ' = F = 0  and 9 = 0 = 1  
(13a, b) 

a t r / ~ o o :  F ' = I ,  g=0 ,  and 0 = 0  

With the definition of the local skin friction coefficient 

l" w 
Cf-- 1 2 ~pu~ 

a dimensionless skin friction group, SFG, can be formed as 
leU \3n/(n+ l) 

SFG =½cf Re 1/("+ 1)= ¢-,/(, + x ~ { ~ }  [F"(~, 0)]" (14) 
\ uoo/ 

Similarly, with the local Nusselt number as 

hL 
N u -  

k 

a dimensionless heat transfer group, HTG, can be formed as 

H T G =  Nu  Re-1/(.+ I)_  _ ~ -  a/(.+ I , (  U. ~(2-")/("+ I) - 0 ' (L 0) (15) 
\uoo/ 

For a specific problem solution, the shape of the body, r(x), 
and the outer flow distribution u.(x)/u® have to be known. 

Appl icat ion to a rotat ing sphere 

For a sphere, r ( x ) = R  sin(x/R), where R is the radius of the 
sphere which corresponds to the characteristic length L. Laminar 
boundary layers can be assumed for Reynolds numbers based 
on the sphere diameter up to Red~200, although vortex 
shedding might occur already at Re d ~ 130. From potential flow 
theory 

u = - 2  a sin(X~ (16a) 
Uoo \ K /  

which is assumed here in order to be able to compare our 
results with previously published case studies. Alternatively, an 
empirical expression for ue/u ~ could be employed; for example, 7 

ue 1.5~_0.4371~3 + 0.1481~5_ 0.0423~ 7 (16b) 
Uoo 

With r(x), u Juno, and L identified, the coefficients (1 la)-(1 lg) 
take on the form 

A = ~ cot 

1 2 n -  1 
7= + A + ~ c o t  ~ 

n + l  n + l  

C = ~¢BP cot 

O = ~"/~" + 1)(3 sin ~)" - 2.)/I. + 1) (17a-g) 

E =  ~l.- 1)/t. + 1)(2a sin ~)3(1 -n)/(n+ 1) 

G = (2Bp1/E)"- x 

H = 2~ cot 

Numerical  solution 

The modeling equations, Equations 8 to 10, with the appropriate 
coefficients for the rotating sphere case (17a-g) were solved 
numerically using the two-point finite difference method out- 
lined in Cebeci and Bradshaw. 8 A nonuniform mesh with a 
very fine grid spacing near the stagnation point was selected 
to obtain accurate velocity and temperature profiles. A total of 
121 nodal points in the ~ direction and 144 grid points in the 
q direction were necessary in order to achieve mesh density 
independence of the results. 

Results and discussio 

In order to verify the accuracy of our computer simulation 
model, we compared our results with accepted data sets for an 
impermeable, rotating disk 2 and a sphere 1'4's in a uniform 
stream of a Newtonian fluid. Excellent agreement for HTG 
values (cf. Equation 15) obtained at different Prandtl numbers 
and disk speeds is shown in Table 1. A consistently good data 
match was also achieved for the rotating sphere case when the 
local skin friction group (SFG values) and the heat transfer 
group (HTG values) were compared as given in Tables 2 and 
3, respectively. Figures 2 and 3 show practically the identical 
graphs as given by Lien et al. 5 as well as the impact of the edge 
velocity distribution on the wall parameters SFG and HTG. 
For the following graphs, Equation 16a has been used. 

Figures 4 and 5 depict the SFG and HTG distributions for 
different types of fluids at P r =  100 flowing past a heated, 
impermeable sphere rotating at BP = 1.0 or 10.0. As expected, 

Table 1 Data comparison of HTG=Nu/Re yen+l) for a rotating disk; MP=0 and n = l  

Pr=0.7 Pr= l .0  Pr=10.0 

Koh & Price Koh & Price 
BP** (1967) Present method (1967) Present method 

Koh & Price 
(1967) Present method 

0.0 0.6653 0.6653 0.7621 0.7621 1.750 1.7517 
0.6 0.6755 0.6753 0.7750 0.7748 1.801 1.7972 
1.0 0.6818 0.6816 0.7830 0.7828 1.829 1.8256 
4.0 0.7220 0.7222 0.8336 0.8339 2.003 2.0049 
5.0 0.7338 0.7337 0.8485 0.8484 2.058 2.0551 

10.0 0.7819 0.7823 0.9092 0.9096 2.261 2.2627 
15.0 0.8190 0.8210 0.9565 0.9584 2.430 2.4248 
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the skin friction coefficient is larger at high rotation and reaches 
at ~=0.96, i.e., near qb=55 °, a maximum before dropping 
eventually to zero at the point of boundary layer separation. 
At very low speeds, BP ~< 1.0, the effect of the type of power-law 
fluid on SFG is less pronounced (of. Figure 4). Computer experi- 
ments showed that the angle of boundary layer separation, 
measured from the forward stagnation point, decreases with 
increasing index of the power-law viscosity model. This trend 
is indicated in Figure 4. A subtle effect of rotation is the fact 
that dilatant fluids (n > 1.0) generate larger SFG values in the 
vicinity of cf . . . .  than do pseudoplastics. This behavior depends 
upon the uJu.(~) approximation used. For example, for 
stationary bodies the SFG for pseudoplastics is consistently 
higher than for dilatant fluids when an empirical outer flow 
velocity function is employed. 7 Figure 5 shows the unique HTG 
distributions for Newtonian and power-law fluids flowing past 
a heated, spinning sphere. An increase in angular velocity 
enhances the heat transfer moderately. The contrasting behavior 
of the two types of power-law fluids near the stagnation point 

Table 2 Comparison ofSFG =}cfRe 1/("+1) for a rotating sphere; 
MP=0,  n = l  

Lee Lien 
Hoskin et al. et aL Present 

BP* X/R (1955) (1978) (1986) method 

0.474 1.2497 1.2496 1.2499 1.2499 
0.951 1.8402 1.8403 1.8400 1.8400 

1 1.215 1.7203 1.7207 1.7185 1.7184 
1.374 1.4783 1.4780 1.4732 1.4727 
1,486 1.2336 1.2269 1.2173 1.2171 

0.474 1.8170 1.8170 1.8182 1.8174 
0.951 2.6359 2.6362 2.6366 2.6356 

4 1.215 2.4031 2.4023 2.3990 2.3979 
1.374 1.9953 1.9892 1.9786 1.9769 
1.486 1.5876 1.5644 1.5373 1.5361 

0.474 2.8165 2.8166 2.8196 2.8172 
0.951 4.0440 4.0444 4.0462 4.0432 

10 1.215 3.6218 3.6186 3.6133 3.6100 
1.374 2.9312 2.9144 2.8930 2.8888 
1.486 2.2451 2.1897 2.1313 2.1277 
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can be explained with Equation 15. For small 4, we approximate 
uc/u= (of. Equation 16) and obtain 

HTG ~ ~(I -.}/(. + 1)0,(~ ' 0) 

S "  n=l.O 

Pr = 1 . 0  

_.  = . 

~= BP = i0.0 

~" BP = 4,0 

-tO -0.5 nn O~ tO 

M? 

Figure 2 Skin friction group as a function of mass transfer parameter 
with the effects of sphere rotation and edge velocity distribution 
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Figure 3 Heat transfer group as a function of mass transfer param- 
eter with the effects of sphere rotation and edge velociW distribution 

Table 3 Data comparisons of HTG=Nu/Re 1/("+1) for a rotating sphere; MP=0,  n = l  

BP*= I . 0  

Lee Lien 
Hoskin et al. et al. Present 

Pr X/R (1955) (1978) (1986) method 
Hoskin 
(1955) 

BP*=10 

Lee 
et al. 

(1978) 

Lien 
et aL 

(1986) 
Present 
method 

0.0 0.9589 0.9588 0.9586 0.9587 
0.951 0.7792 0.7998 0.7993 0.7994 

1 1.219 0.7064 0.6961 0.6966 0.6965 
1.374 0.6275 0.6171 0.6195 0.6194 
1.486 0.5557 0.5510 0.5559 " 0.5556 

0.0 2.2364 2.2363 2.2359 2.2359 
0.951 1.8571 1.8520 1.8513 1,8510 

10 1.215 1.6029 1.5994 1.6004 1,5993 
1.374 1.4173 1.4084 1.4102 1,4081 
1.486 1.2600 1.2551 1.2511 1,2482 

0.0 - -  4.9878 4.9947 4,9864 
0.951 - -  4.1151 4.1238 4,1130 

100 1.215 - -  3.5375 3.5543 3,5381 
1.374 - -  3.0981 3.1217 3.0989 
1.486 - -  2.7444 2.7586 2.7285 

1.0914 
0.9264 
0.8042 
0.7223 
0.5905 

2.7635 
2.2722 
1.9363 
1.6640 
1.4180 

1.1141 
0.9218 
0.7904 
0.6825 
0.5776 

2.7718 
2.2695 
1.9234 
1.6434 
1.3912 

6.3845 
5.2019 
4.3812 
3.7114 
3.1053 

1.1142 
0.9215 
0.7924 
0.6902 
0.5982 

2.7701 
2.2684 
1.9278 
1.6543 
1.4004 

6.3848 
5.2138 
4.4205 
3.7852 
3.2048 

1.1140 
0.9214 
0.7921 
0.6895 
0.5972 

2.7713 
2.2684 
1.9253 
1.6489 
1.3957 

6.3823 
5.1997 
4.3878 
3.7293 
3.1208 
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Figure 4 Effects of rotation parameter and viscosity model index 
on local SFG distribution 
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Figure 5 Effects of rotation parameter and viscosity model index 
on local HTG distribution 
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Figure 6(a) Effects of mass transfer and rotation parameters on 
local SFG distribution for pseudoplastics 

which implies that for ~ ~ 0, 

HTG__, {0oo for n < l . 0  
for n > 1.0 

Figures 6(a), (b) and 7(a), (b) demonstrate the effect of wall 
suction/blowing of different fluids on the local skin friction and 
heat transfer group, respectively. As an extension of Figure 4, 
Figures 6(a), (b) show that injection reduces and suction 
increases the SFG slightly. The effect is somewhat less at higher 

angular velocities. As expected, suction will delay and injection 
will cause earlier separation when compared with an imperme- 
able (rotating) sphere. The skin friction group is measurably 
lower for pseudoplastics flowing past rotating spheres (BP > 1.0) 
than for dilatant fluids. SFG values for Newtonian fluids fall 
between the two graphs (cf. Figures 6(a), (b)). A more dramatic 
effect of the mass transfer parameter is shown in Figures 7(a), 
(b), where the local HTG is considered. Following the previously 
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0.0 0.3 0.6 0.9 t..2 1.5 

Figure 6(b) Effects of mass transfer and rotation parameters on 
local SFG distribution for dilatant fluids 
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Figure 7(a) Effects of mass transfer parameter and generalized 
Prandtl number on local HTG distribution for pseudoplastics 
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l o c a l  H T G  d i s t r i b u t i o n  f o r  d i l a t a n t  f l u i d s  
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Figure 8(0) Local boundary layer veloci ty profi les of a rotating 
sphere with suction immersed in a forced flow field of power-law 
fluids 
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Figure 8(b) Local boundary layer temperature profi les of a rotat ing 
sphere w i th  suct ion immersed in a forced f l ow  field of power - l aw  
f luids 

discussed trend for pseudoplastics (Figure 7(a)) and dilatant 
fluids (Figure 7(b)), heat transfer is enhanced via rotation and, 
more significantly, by withdrawing fluid at temperature 7", from 
the wall. On the other hand, injection of fluid at T= T, reduces 
HTG because the dimensionless wall temperature gradient is 
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less steep when constantly heated fluid is supplied through the 
wall. As indicated in Figure 7(a), the generalized Prandtl 
number has a profound effect on the HTG, especially in the 
presence of suction. The reason is that larger Prandtl numbers 
imply thinner thermal boundary layers and with suction moving 
cooler fluid toward the surface, the wall temperature gradient 
becomes steeper and steeper (cf. Equation 15). 

Figures 8(a), (b) show for the suction case the velocity and 
temperature profiles, respectively, for different fluids at two 
different positions, i.e., ~=0.5, which is equivalent to ~b~ 30 ° 
and ~ = 1.65 (~b ~ 95°). Both the velocity and thermal boundary 
layers are thinner for dilatant fluids than for pseudoplastics. 
Boundary layer separation is eminent for ~ > 1.65, since a point 
of inflection is detectable near r/= 0 (Figure 8(a)) especially for 
fluids with n/> 1.0. 
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